
Ant
Technology

Mobile Delivery Service
User Guide

Document Version: 20230209

Ant
Technology

Mobile Delivery Service
User Guide

Document Version: 20230209

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement

and other trademarks related to Ant Group are owned by Ant
Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Mobile Delivery Service User Guide·Legal disclaimer

> Document Version: 20230209 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that
the user must understand.

 Notice:

If the weight is set to 0, the server
no longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set network
type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Mobile Delivery Service User Guide·Document convent i
ons

> Document Version: 20230209 I

Table of Contents
1.Service announcement

2.About Mobile Delivery Service

3.Process of Mobile Delivery Service

4.Manage version upgrade

4.1. Android

4.1.1. Quick start

4.1.2. Advanced operations

4.1.3. Default storage path

4.2. iOS

4.2.1. Add SDK

4.2.2. Use SDK

4.3. Manage Android releases

4.4. Manage iOS releases

5.Manage offline packages

5.1. Configure offline packages

5.2. Generate offline packages

5.3. Create offline packages

5.4. Release offline packages

5.5. Manage offline packages

5.6. OpenAPI

5.6.1. Overview and preparation

5.6.2. API description

6.Configuration Management

6.1. Android

6.2. iOS

6.3. Manage configurations

06

07

09

11

11

11

13

16

16

16

17

21

23

28

28

28

32

34

35

36

36

38

60

60

62

66

Mobile Delivery Service User Guide·T able of Contents

> Document Version: 20230209 I

7.Manage whitelists

8.Manage release rules

9.Reference

9.1. API

9.2. Code sample

9.2.1. Version update code sample

9.2.2. Hotpatch Code Sample

9.2.3. Switch configuration code sample

69

70

73

73

74

74

75

77

Mobile Delivery Service User Guide·T able of Contents

> Document Version: 20230209 II

To provide a highly-efficient real-time delivery service, starting from 21:00 on July 14, 2022 in UTC+8, the
domain name used by the Mobile Delivery Service (MDS) for delivery was changed from mcube-prod.cn-
hangzhou.oss.aliyuncs.com to mcube-prod.mpaascloud.com. Use the new domain name to obtain released
packages.

After this change, to use the acceleration capability of the MDS, you must modify the second-level directory
name to mcube-prod.mpaascloud.com.

1.Service announcement

Mobile Delivery Service User Guide·Service announcem
ent

> Document Version: 20230209 6

Mobile Delivery Service (MDS for short) is one of the core basic service components of the mPaaS platform. It
provides management and release services for version upgrade packages, hotpatch packages, and H5 offline
packages, and supports configurations management, whitelists, release rules and other management
functions.

Mobile Delivery Service serves to manage and release the version upgrade and hotpatch packages. After you
integrate Mobile Delivery Service on your client, you can generate a new package in mPaaS plugin and release
the new package on the Mobile Delivery Service console, then the client receives the package and starts
upgrade. Mobile Delivery Service also supports implementing gray release by means of whitelist. You can use
advanced filtering rule to make the gray release more accurate, e.g. specifying a device type.

Functions

Function Description

Gray release

Before formal release, launch a small-scale release (for
example: only released to internal staff) by means of
whitelist to validate if the new package's functions meet
the expectation; or implement time-window gray release
to release the package to a specified number of users in
a specified time period. If it all works, the package can
be pushed network-wide.

Advanced filter

When you perform gray release, you can utilize the
advanced filtering rule to define a more accurate
whitelist. For example, only send the package to the
users of MI phones. Multiple filtering rules can be
superposed, that means only when all filtering rules are
matched can the package be pushed.

Realtime rollback

Only available in Hotpatch. During formal release,
problems may arise despite of gray release. At that
moment, execute real-time rollback to revert the
package to previous version.

Custom signature verification

To ensure security, hotpatch has a custom signature
verification flow to ensure the correctness of script
source. mPaaS plugin provides the function of
generating hotpatch resource packages and signing the
packages.

Advantages
Delivery management of multiple products, tasks, and dimensions

Multiple apps are supported for delivery management. It further provides features such as official release,
hotpatch, offline packages, and real-time push.

For more information about using the hotpatch feature,
please search for the group number 41708565 with DingTalk to join DingTalk group for further communication.

Intelligent grey release, and three upgrade modes available

Internal grey release, external grey release, release targeted at specified population, regions, phone types,
and networks are available.

2.About Mobile Delivery Service

Mobile Delivery Service User Guide·About Mobile Deliv
ery Service

> Document Version: 20230209 7

Push upgraded capabilities of offline packages only

It helps reduce data redundancy and bandwidth occupied by devices. It plays a pivotal role when the
network on the mobile devices is unstable.

High sensitivity and high availability

The client-side RPC interface capability is upgraded, with an availability rate up to 99.95%. The target
devices can be reached within several minutes.

High performance system

The reach rate is up to 99.95%, and the daily UV exceeding 0.2 billion can be supported.

Mobile Delivery Service User Guide·About Mobile Deliv
ery Service

> Document Version: 20230209 8

You can conveniently integrate the function of Mobile Delivery Service to your client by installing the client
SDK provided by the Mobile Delivery Service platform.

The process of Mobile Delivery Service is as follows:

1. Add the corresponding SDK on the client, the capability of integrating Mobile Delivery Service upgrade or H5
offline packages.

2. Package and generate version upgrade packages, offline packages, etc. in the mPaaS plug-in, and upload
them to the release console.

3. Create a release task on the console for gray release, official release, etc.

4. The client then pulls the new release package for upgrade and offline release.

In addition, you can use the switch configuration service to modify the client-side code processing logic. By
adding the required switch configuration items on the console, targeted distribution can be achieved.

Operation flow
The following diagram shows the process of Mobile Delivery Service release of version upgrade packages and
offline packages:

Operations on console
You can perform the following operations on the Mobile Delivery Service console:

Version upgrade packages > Manage releases: Manage and release the configuration of new client version.

Offline packages > Manage offline packages: Package different businesses into different offline packages,
and deliver the offline packages through the Mobile Delivery Service platform to update the client-side
resources.

Switch configuration > Manage configurations: Configure, modify or push various switches. You can deliver
the packages by platform, whitelist, percentage or other condition.

Manage whitelists: Manage whitelists so that you can easily create hundreds of thousands of whitelist data
for the use in Mobile Delivery Service.

3.Process of Mobile Delivery Service

Mobile Delivery Service User Guide·Process of Mobile D
elivery Service

> Document Version: 20230209 9

Manage release rules: Pedefine various configuration data required for Mobile Delivery Service so that you
don’t have to manually input the data every time, with work efficiency improved and error rate decreased.

Mobile Delivery Service User Guide·Process of Mobile D
elivery Service

> Document Version: 20230209 10

This topic describes how to add the Upgrade SDK related to the release management. After adding the SDK
and complete the necessary configurations, you can release a new version of an App is released in the mPaaS
console, and the client can detect the new version through the upgrade API and remind users to download
and upgrade.

Currently, Upgrade SDK supports access through Native AAR, mPaaS Inside, and Portal & Bundle.

The complete access process mainly includes the following 4 steps:

1. Add SDK

2. Configure project

3. Initialize mPaaS(only required for Native AAR and mPaaS Inside)

4. Check for update

Prerequisites
If you access MDS through Native AAR, ensure that you have added mPaaS to project.

If you access MDS through mPaaS Inside, ensure that you have completed the mPaaS Inside access process.

If you access MDS in componentized access mode (through Portal & Bundle projects), ensure that you have
completed the componentized access process.

Add SDK

Native AAR mode
Follow the instructions in AAR component managementto install the UPGRADE component in the project
through Component management (AAR).

mPaaS Inside mode
Install the UPGRADE component in the project through Component management (AAR).

For more information, see Manage component dependencies > Add/delete component dependencies.

Componentized access mode
Install the UPGRADE component in the Portal and Bundle projects through Component management (AAR).

For more information, see Manage component dependencies > Add/delete component dependencies.

Configure project

Configure AndroidManifest
1. Add the following permissions in the AndroidManifest.xml file.

 <uses-permission android:name="android.permission.REQUEST_INSTALL_PACKAGES" />

2. Add the following configuration in the AndroidManifest.xml file:

4.Manage version upgrade
4.1. Android
4.1.1. Quick start

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 11

 <provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="${applicationId}.fileprovider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/file_paths" />
 </provider>

Note

For more information about the configuration of AndroidManifest.xml , please see App Manifest
Overview.

3. Create the file_paths.xml file in the src/main/res/xml directory in the main module of the Portal project
with the following content:

 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <paths>
 <external-files-path
 name="download"
 path="com.alipay.android.phone.aliupgrade/downloads" />
 <external-path
 name="download_sdcard"
 path="ExtDataTunnel/files/com.alipay.android.phone.aliupgrade/downloads" />
 </paths>
 </resources>

Add resources

Note

If you access the UPGRADE SDK through mPaaS Inside or Native AAR, you need to add the following
resources to your App, otherwise, the upgrade component will not work. Click hereto get the resource file.

Merge the content of strings.xml , styles.xml , and colors.xml under the values directory.

Initialize mPaaS
If you access the UPGRADE SDK through Native AAR or mPaaS Inside, you must initialize mPaaS.

Add the following codes in the object Application :

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 12

https://developer.android.com/guide/topics/manifest/manifest-intro
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/112683/AntCloud_zh/1583943232631/res.zip

Add the following codes in the object Application :

public class MyApplication extends Application {

 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);
 // Set mPaaS initialization callback
 QuinoxlessFramework.setup(this, new IInitCallback() {
 @Override
 public void onPostInit() {
 // This callback indicates that mPaaS initialization has been done, and relevant mPaaS calls can be performe
d here
 }
 });
 }

 @Override
 public void onCreate() {
 super.onCreate();
 // Initialize mPaaS
 QuinoxlessFramework.init();
 }
}

Check for update
Quickly check for an update, and only the checking result is returned.

MPUpgrade mMPUpgrade = new MPUpgrade();
// The synchronization method, which is called in a subthread.
int result = mMPUpgrade.fastCheckHasNewVersion();
if (result == UpgradeConstants.HAS_NEW_VERSION) {
 // New version available
} else if (result == UpgradeConstants.HAS_NO_NEW_VERSION) {
 // No new version available
} else if (result == UpgradeConstants.HAS_SOME_ERROR) {
 // Error
}

After integrating the SDK, you can set whitelist, use the SDK to detect upgrades and notify users of any
upgrades based on business requirements.

Set whitelist
Set whitelist user ID:

MPLogger.setUserId("your whitelist ID");

Detect new version
Detect new versions quickly and remind users with a pop-up:

4.1.2. Advanced operations

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 13

Note

Only the upgrade popup is displayed quickly, and the forced upgrade logic is not included. If you need to
force an upgrade, please use a custom upgrade to implement it.

 MPUpgrade mMPUpgrade = new MPUpgrade();
 mMPUpgrade.fastCheckNewVersion(activity, drawable);

Detect new versions quickly and return the detection result only:

 MPUpgrade mMPUpgrade = new MPUpgrade();
 // The synchronous method, which is called in the subthread.
 int result = mMPUpgrade.fastCheckHasNewVersion();
 if (result == UpgradeConstants.HAS_NEW_VERSION) {
 // A new version is available.
 } else if (result == UpgradeConstants.HAS_NO_NEW_VERSION) {
 // No new version is available.
 } else if (result == UpgradeConstants.HAS_SOME_ERROR) {
 // An error occurs.
 }

Obtain upgrade details
Call the fastGetClientUpgradeRes method to obtain more information.

MPUpgrade mMPUpgrade = new MPUpgrade();
// The synchronization method, which is called in a subthread.
ClientUpgradeRes clientUpgradeRes = mMPUpgrade.fastGetClientUpgradeRes();

The returned example displays information such as the new version number, download address, etc. Some of
the parameters have the following meanings:

 downloadURL : Download address

 guideMemo : Upgrade information

 newestVersion : Latest version number

 resultStatus : Upgrade mode

202: Single reminder

204: Multiple reminders

203/206: Forced update

Other custom detections
For more information about custom detections, see the following example:

Implement the MPaaSCheckCallBack interface to respond to requests created by the upgrade SDK, such as
displaying a pop-up:

 MPUpgrade mMPUpgrade = new MPUpgrade();
 mMPUpgrade.setUpgradeCallback(new MPaaSCheckVersionService.MPaaSCheckCallBack() {

 });

Call the MPUpgrade.checkNewVersion method to detect upgrades.

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 14

Note

 MPUpgrade encapsulates the call of MPaaSCheckVersionService . You can also customize the
implementation method. For information about MPaaSCheckVersionService and MPaaSCheckCallBack ,
see API reference.

Customize the download directory of installation package (for 10.1.60 and later
versions)
The configuration is as follows:

File dir = getApplicationContext().getExternalFilesDir("Custom directory");
MPUpgrade mpUpgrade = new MPUpgrade();
mpUpgrade.setDownloadPath(dir.getAbsolutePath());

Add the following configurations in the file_path.xml file:

// external-files-path corresponds to the directory of getExternalFilesDir
// Use the element corresponding to your custom directory. If you are not sure about how to select an element, searc
h for “Adapt FileProvider” on the Internet
<external-files-path
 name="download"
 path="custom directory" />

Handle the SDK package parsing failure upon forced upgrade
Some ROMs may fail to parse the SDK package after forced upgrade. This is because the ROMs need to access
the corresponding App process when installing the package. However, the App process will be forcibly stopped
during forced upgrade. As a result, the package fails to be parsed. Although such custom ROM behavior is
incompliant with the native Android platforms, you can still solve the problem by implementing
 UpgradeForceExitCallback to return false in needForceExit .

1. Implement a callback.

 public class UpgradeForceExitCallbackImpl implements UpgradeForceExitCallback {
 @Override
 public boolean needForceExit(boolean forceExitApp, MicroApplicationContext context) {
 // If false is returned, the app process will not be forcibly stopped, and the installation package will be parsed
successfully. If true is returned, you need to call the doForceExit method below to stop the process.
 return false;
 }
 @Override
 public void doForceExit(boolean forceExitApp, MicroApplicationContext context) {
 // If you need to stop the process, ensure that the needForceExit method above returns true, and then stop th
e process in this method.
 }
 }

2. Set the callback.

 MPUpgrade mpUpgrade = new MPUpgrade();
 mpUpgrade.setForceExitCallback(new UpgradeForceExitCallbackImpl());

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 15

Important

Use the same MPUpgrade instance to set a callback or request an upgrade.

After setting the callback, you can avoid the failure of parsing the package, but the upgrade
component will no longer automatically kill the process for you. Therefore, when the user does not
click Install but returns to the application, please set an irrevocable pop-up cover layer by yourself to
prevent the user from bypassing the forced upgrade.

Since Baselines V10.2.3.3 and V10.1.68.53, the default path to download a component APK of mPaaS is
changed from an external storage path to an internal storage path.

If targetSdkVersion is 24 or later, you must add the following code to the file_paths.xml file:

<files-path
 name="files-path"
 path="." />

If you want to retain the original download path unchanged, add the following metadata to the manifest file:

<meta-data android:name="use_external" android:value="yes" />

This topic describes how to add the Release upgrade SDK related to release management. After adding the
SDK and complete necessary configurations (refer to Use SDKfor details), you can release new versions of an
App in the mPaaS console.

When releasing a version in the mPaaS console, you can customize release settings such as update reminder
and release type.

After a new app version is released in the mPaaS console, the client can detect the new version through the
upgrade API and remind users to download the update.

Note : App Store does not allow online apps to contain the built-in upgrade detection function. In this case, do
not release new versions in the mPaaS console when the App is under review.

Prerequisite
You have integrated mPaaS to your project. For more information, refer to Access based on native framework
and using Cocoapods.

Add SDK
1. In the Podfile file, use mPaaS_pod "mPaaS_Upgrade" to add dependency.

4.1.3. Default storage path

4.2. iOS
4.2.1. Add SDK

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 16

2. Execute pod install to complete integrating the SDK.

What to do next
Use SDK

After adding the SDK, perform the following steps to connect the delivery service to the iOS client:

1. Detect new version: Call the SDK API method in the code to check whether new versions are available.

2. Configure whitelist gray release: Configure the functions such as the update reminder and gray release.

3. Online release: Generate an .ipa file in the mPaaS console, and release a new version.

Procedure

Detect new version
The upgrade detection SDK provides an API file to check available App upgrades. The method header file is in
the AliUpgradeCheckService.framework > Headers > MPCheckUpgradeInterface.h file.

4.2.2. Use SDK

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 17

typedef NS_ENUM(NSUInteger, AliUpdateType) {
 AliUpgradeNewVersion = 201, /*The latest version is currently in use.*/
 AliUpgradeOneTime, /*A new version of the client is available, and a single reminder is sent.*/
 AliUpgradeForceUpdate, /*A new version of the client is available, and forced upgrade is implemented (obs
oleted).*/
 AliUpgradeEveryTime, /*A new version of the client is available, and multiple reminders are sent.*/
 AliUpgradeRejectLogin, /*Restricted login (obsoleted)*/
 AliUpgradeForceUpdateWithLogin /*A new version of the client is available, and forced upgrade is implemented
.*/
};

/**
 The successful callback of upgrade detection during UI customization

 @param upgradeInfos The upgrade information
 @{upgradeType:202,
 downloadURL:@"itunes://downLoader.xxxcom/xxx",
 message:@"New version available, please upgrade",
 upgradeShortVersion:@"9.9.0",
 upgradeFullVersion:@"9.9.0.0000001"
 needClientNetType:@"4G,WIFI",
 userId:@"admin"
 }
 */
typedef void(^AliCheckUpgradeComplete)(NSDictionary *upgradeInfos);
typedef void(^AliCheckUpgradeFailure)(NSException *exception);

@interface MPCheckUpgradeInterface : NSObject

/**
 The interval between two single reminders, in days. Default value: 3.
 */
@property(nonatomic, assign) NSTimeInterval defaultUpdateInterval;

/**
 Modify the UI proxy of the default pop-up window.
 */
@property (nonatomic, weak) id<AliUpgradeViewDelegate> viewDelegate;

/**
 * Initialize the instance.
 */
+ (instancetype)sharedService;

/**
 Detect updates proactively. If there is an update, the default prompt of mPaaS is displayed in the pop-up.
 *
 */
- (void)checkNewVersion;

/**
 Detect updates proactively. No pop-up is displayed. This method is usually used for UI customization, update detectio
n, and red dot reminder.

 @param complete Callback succeeds, and the upgrade information dictionary is returned.
 @param failure Callback fails.
 */
- (void)checkUpgradeWith:(AliCheckUpgradeComplete)complete
 failure:(AliCheckUpgradeFailure)failure;
@end

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 18

Developers can call the corresponding API to detect updates after the app is started. We recommend that you
call the API after the homepage is displayed so that the startup time of the app is not affected. The following
three calling methods are provided for different UI requirements for the display of upgrade prompt
information:

Use the default pop-up of mPaaS to display the upgrade prompt information.

 - (void)checkUpgradeDefault {
 [[MPCheckUpgradeInterface sharedService] checkNewVersion];
 }

Customize the pop-up icon, network prompt toast, or progress bar of the network request group based on
the default pop-up of mPaaS.

 - (void)checkUpgradeWithHeaderImage {
 MPCheckUpgradeInterface *upgradeInterface = [MPCheckUpgradeInterface sharedService];
 upgradeInterface.viewDelegate = self;
 [upgradeInterface checkNewVersion];
 }

 - (UIImage *)upgradeImageViewHeader{
 return APCommonUILoadImage(@"ilustration_ap_expection_alert");
 }

 - (void)showToastViewWith:(NSString *)message duration:(NSTimeInterval)timeInterval {
 [self showAlert:message];
 }

 - (void)showAlert:(NSString*)message {
 AUNoticeDialog* alertView = [[AUNoticeDialog alloc] initWithTitle:@"Information" message:message delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil, nil];
 [alertView show];
 }

Call the following API to obtain the upgrade information and customize the UI if the pop-up styles provided
by mPaaS do not meet your requirements.

 - (void)checkUpgradeWIthCustomUI {
 [[MPCheckUpgradeInterface sharedService] checkUpgradeWith:^(NSDictionary *upgradeInfos) {
 [self showAlert:[upgradeInfos JSONString]];
 } failure:^(NSException *exception) {
 }];
 }

Configure whitelist gray release
To use the whitelist gray release function in release management, ensure that you have obtained the unique
identity of the client on the server. Configure the unique user identity in category of MPaaSInterface on the
client, and return a unique identity of the app in the userId method, for example, the user name, mobile
phone number, email address, etc.

@implementation MPaaSInterface (Portal)

- (NSString *)userId
{
 return @"mPaaS";
}

@end

For details on how to configure the whitelist in the mPaaS console, see Delivery Service > Manage whitelist.

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 19

Online release

Generate an .ipa file
Use Xcode to generate an .ipa installation package.

Alternatively, generate an .ipa installation package with the packaging function provided by the mPaaS
plug-in. The generated package will be stored in the product directory under your current project.

Bundle Identifier: It must be consistent with bundle Id in the cloud configuration file.

Bundle Version: It must be consistent with info.plist in the Production Version file for the project.

Provisioning Profile: Signature configuration file. It must be consistent with bundle Id , or package
generation will fail.

Debug: Specifies whether to generate the debug installation package.

App Store: Specifies whether to generate a package for release in the App Store.

Release a new version
Use the release management function of the release platform to release a new version. For details about the
release process, see Release management.

Upgrade mode:

When creating a release task in the mPaaS console, choose one of the following upgrade modes:

Single reminder: After a new version is released in the mPaaS console, the client calls the version upgrade
API once and displays the pop-up only once in the silence period to avoid disturbing users.

This upgrade mode is suitable for instructing users to perform an upgrade upon the release of a new
version.

By default, the silence period is 3 days, during which a user is notified only once. To change the length of
the silence period, set the following properties before calling the upgrade detection API:

 - (void)checkUpgradeDefault {
 [MPCheckUpgradeInterface sharedService].defaultUpdateInterval = 7;
 [[MPCheckUpgradeInterface sharedService] checkNewVersion];
 }

Multiple reminders: After a new version is released in the mPaaS console, the client displays a pop-up
reminder each time it calls the version upgrade API. This upgrade mode is suitable for instructing users to
upgrade the app to the new version as soon as possible after the new version has been released for a
period of time.

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 20

Mandatory reminder: After a new version is released in the mPaaS console, the client displays a pop-up
reminder without the Cancel button each time it calls the version upgrade API. Users can no longer use the
app without an upgrade. This upgrade mode is suitable for forcing users to upgrade the app to the new
version and unpublishing the earlier app version.

Related link
Code sample

Release management is the configuration backend for upgrading the client to a new version, which allows you
to create multi-task and multi-dimensional upgrade configuration.

About this task
Android release management provides the following functions:

Add upgrade resources and provide the QR code of the download link.

Create and modify the task of the new version resource package.

Create multiple types of release tasks for added release packages, such as whitelist gray release, time-
window gray release, and official release. One upgrade package can have multiple release tasks.

Support upgrade filtering by multiple criteria, such as the city, model, device system version, network, and
release package version.

Add release packages
Log in to the mPaaS console and complete the following steps:

1. On the left navigation bar, choose Mobile Delivery Service > Release management. The release
management list is displayed.

2. Click Add a package, and complete the following configuration in the pop-up window:

Platform: Select Android.

Package: Upload a local .apk release package.

Version: Enter the version number of this package, which contains digits and characters.

Release description: Describe this release package. Optional.

Download verification: When enabled, after the QR code is scanned, the package can be downloaded only
after the verification code is verified.

3. Click OK. The new release package is displayed on the top of the list.

Note: After the release package is added, a QR code is generated in the QR code column for users to
download the .apk release package. You can scan the QR code to download the release package to your
phone.

4. In the release management list, click the plus icon (

) in front of the release package to view the release task of the upgrade package:

If the upgrade package has never been released, the status of the package is To be released, and there is
no release task.

If the upgrade package has been released, the status of the package is the release status of the latest
task, and there are release tasks.

Create a release task
Create a release task for the added release package. Multiple release tasks are supported for one upgrade
package. Up to 10 release tasks are allowed for one upgrade package concurrently.

4.3. Manage Android releases

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 21

Rules for delivering release tasks:

When the client request matches multiple tasks, the higher version task takes priority.

If a release package have multiple release tasks, by task type, the priority of the tasks is: Formal release >
Whitelist gray release > Time window gray release.

For a specific version release package, if the task type of the release tasks are same, the latest released
task shall prevail.

For example, for version 5.0 upgrade package, a whitelist release task A was created on the console to
perform upgrade for version 4.0 app with single reminder; then a whitelist task B was created to perform a
forced upgrade for version 4.0. With the two tasks performing at the same time, when a 4.0 version client
requests an upgrade, task B is delivered first, and after task B is terminated or suspended, task A takes
effect.

If a grayscale task and a formal task are performed concurrently for a release package, the release status
shows “Official release” in the release task list, and when the formal task is paused or ended, the release
status changes to “Gray release”. If all tasks are finished, it shows “Finished”.

The operation steps are as follows:

1. Locate the release package for which you want to create a release task.

2. In the Operation column, click Create release task.

3. On the Create a release task page, select or enter the following information:

Release type: You can select Gray release and Official release.

Upgrade mode: You can select Single, Multiple, and Forced upgrade.

Single: After the app is started, it displays an upgrade message based on the silent strategy.

Note

Silent strategy means that after the upgrade reminder pops up, after the user cancelled it, the
reminder will be in Silent state for a period of time, and no longer reminds the upgrade. The default
silent period is 3 days, which can be customized. To customize the silent period, see setIntervalTime.

Multiple: The app displays an upgrade message every time it is started. Users can close the message
window.

Forced upgrade: The app displays an upgrade message each time it is started, and the message
window cannot be closed.

Release model (only when Gray release is selected): You can select Whitelist gray release and Time-
window gray release.

If you select Whitelist gray release, you can configure a whitelist below.

Note: You can configure a whitelist on the Whitelist management page. For more information, see
Manage whitelist.

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 22

If you select Time-window gray release, you can set End time and Users count.

Upgrade prompt message: Specify a message to be displayed upon an upgrade. Optional.

Release description: Describe this release. Optional.

Advanced rule: For Gray release only. Click Add. In the displayed dialog box, select a rule type such as
City, Device model, or Network in Type, set Operation type to Include or Exclude, and set Resource value
corresponding to the type you selected.

4. After completing the configuration, click OK. To view the release task that you have created, click the plus
icon (

) on the left of the release package.

5. Repeat the steps above if you need to create multiple release tasks.

Other operations
After creating a release task for the upgrade package, you can change the task status.

1. In the release management list, click the plus icon (

) in front of the release package.

2. Perform the following operation based on your needs:

Click Pause to suspend the release task. To continue the task, click Continue.

Click End to terminate the release task. After the task is terminated, you can no longer operate it.

Release management is the configuration backend for upgrading the client to a new version, which allows you
to create multi-task and multi-dimensional upgrade configuration.

About this task
iOS release management provides the following functions:

Add upgrade resources and provide the QR code (for Enterprise distribution only) for downloading the app .

Create and modify the task of the new version resource package.

Create multiple types of release tasks for added release packages, such as whitelist gray release, time-
window gray release, and official release. One upgrade package can have multiple release tasks.

Support upgrade filtering by multiple criteria, such as the city, model, device system version, network, and
release package version.

Add release packages

4.4. Manage iOS releases

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 23

Log in to the mPaaS console and perform the following steps:

1. In the left navigation bar, choose Mobile Delivery Service > Release management. The release management
list is displayed.

2. Click Add a package, and complete the following configuration in the pop-up window:

Platform: Select iOS.

Release type: The options include App Store, Enterprise distribution, and TestFlight.

App Store: Upgrade prompts for apps downloaded from the App Store will be displayed.

Enterprise distribution: Upgrade prompts for apps distributed within enterprises will be displayed.

TestFlight: Gray release verification will be performed on a new version before its release in the App
Store.

3. Click OK. The new release package is displayed on the top of the list.

4. In the release management list, click the plus icon (

) in front of the release package to view the release task of the upgrade package:

If the upgrade package has never been released, the status of the package is To be released, and there is
no release task.

If the upgrade package has been released, the status of the package is the release status of the latest
task, and there are release tasks.

App Store

Note

To use App Store release, first launch your App in the App Store.

If you select App Store, you should provide the following information:

App Store address: Enter the address of your App in the App Store.

Version: Enter the version number of current release.

Note: The version number must keep consistent with the Product Version in info.plist file in the iOS project.

Release description: Describe this release. Optional.

Enterprise distribution
If you select Enterprise distribution, you should provide the following information:

Upload icon(optional): Upload a picture in the .jpg or .png format. Optional.

Package: Upload a local .ipa release package.

bundleId(optional): App bundleId. If left empty, the bundleId you entered in the the bundleId you entered on
the code configuration page when downloading the configuration file will be used.

Version: Enter the version number of this release.

Note: The version number must keep consistent with the Product Version in info.plist file in the iOS project.

Release description(optional): Describe this release. Optional.

Download verification: When enabled, after the QR code is scanned, the package can be downloaded only
after the verification code is verified.

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 24

Note

After the Enterprise distribution release package is added, a QR code is generated in the QR code
column in the release management list for users to download the .ipa release package.

TestFlight

Note

To use TestFlight testing features, you must have created and enabled public links in App Store Connect.

TestFlight is only available in clients with version ≥ 10.1.32.

The Package Expiration Time and Tester Limit you enter must match what you set in App Store Connect.

If you select TestFlight, provide the following information:

App Store Connect address: Enter the public link address that you have created on App Store Connect.
Ensure that the link is enabled.

Valid days: Enter the number of valid days of the TestFlight package. It must be consistent with that you
have set on App Store Connect.

Tester limit: Enter the maximum number of persons involved in the test. It must be consistent with that you
have set on App Store Connect.

Version: Enter the version number of this release.

Note: The version number must keep consistent with the Product Version in info.plist file in the iOS project.

Release description: Describe this release. Optional.

Create a release task
Create a release task for the added release package. Multiple release tasks are supported for one upgrade
package. Up to 10 release tasks are allowed for one upgrade package concurrently.

Rules for delivering release tasks:

When the client request matches multiple tasks, the higher version task takes priority.

If a release package have multiple release tasks, by task type, the priority of the tasks is: Formal release >
Whitelist gray release > Time window gray release.

For a specific version release package, if the task type of the release tasks are same, the latest released
task shall prevail.

For example, for version 5.0 upgrade package, a whitelist release task A was created on the console to
perform upgrade for version 4.0 app with single reminder; then a whitelist task B was created to perform a
forced upgrade for version 4.0. With the two tasks performing at the same time, when a 4.0 version client
requests an upgrade, task B is delivered first, and after task B is terminated or suspended, task A takes
effect.

If a grayscale task and a formal task are performed concurrently for a release package, the release status
shows "Official release" in the release task list, and when the formal task is paused or ended, the release
status changes to "Gray release". If all tasks are finished, it shows "Finished".

The operation steps are as follows:

1. Locate the release package for which you want to create a release task.

2. In the Operation column, click Create release task.

3. On the Create a release task page, select or enter the following information:

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 25

https://appstoreconnect.apple.com/login
https://appstoreconnect.apple.com

Release type: You can select Gray release and Official release.

Gray release: Before the official release, release the package to some of the users to test and validate
the functionality of the new package.

Official release: Release the package officially to all the users.

Note

TestFlight and enterprise distribution types of distributions only support gray release. The
TestFlight release page does not display the release type option, and the release package of the
enterprise distribution type is fixed to the gray type and cannot be selected.

Upgrade mode: You can select Single, Multiple, and Forced upgrade.

Single: After the App is started, it displays an upgrade message based on the silent strategy.

Note

Silent strategy means that the reminder will be in silent state for a period of time, and no longer
reminds the upgrade after the user cancelled the pop-up upgrade reminder. The default silent
period is 3 days, which can be customized. To customize the silent period, see Release a new
version.

Multiple: The App displays an upgrade message every time it is started.

Forced upgrade: The App displays an upgrade message each time it is started. You cannot close the
message window.

Note

For TestFlight release packages, only Single and Multiple are available.

Release model (only when Gray release is selected): You can select Whitelist gray release and Time-
window gray release.

If you select Whitelist gray release, you can configure a whitelist below.

Note

You can configure a whitelist on the Whitelist management page. For more information, see Manage
whitelist.

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 26

If you select Time-window gray release, you can specify End time and Users count.

Note

For Enterprise distribution release packages, only Whitelist gray release is available.

Upgrade prompt message: Specify a message to be displayed upon an upgrade. Optional.

Release description: Describe this release. Optional.

Advanced rule: For Gray release only. Click Add. In the displayed dialog box, select a rule type such as
City, Device model, or Network in Type, set Operation type to Include or Exclude, and set Resource value
corresponding to the type you selected.

4. After completing the configuration, click OK. To view the release task that you have created, click the plus
icon (

) on the left of the release package.

Other operations
Upload symbol table. In the release management list, upload a symbol table to an added release package.

One .ipa release package corresponds to one symbol table file.

Only symbol tables in the dSYM format are supported. Before uploading a symbol table, compress it into
a .tgz package.

Change the release task of an upgrade package. Click the plus icon (

) in front of the release package in the release management list to view the release task of the upgrade
package.

Click Pause to suspend the release task. To continue the task, click Continue.

Click End to terminate the release task. After the task is terminated, you can no longer operate it.

Mobile Delivery Service User Guide·Manage version up
grade

> Document Version: 20230209 27

Before creating an offline package, you must add relevant configurations of the offline package on the
Manage Configuration page.

Procedure
Log in to the mPaaS console, and complete the following steps:

1. From the navigation bar on the left, click Delivery Service > Manage offline packages.

2. On the offline package list page, click the Manage configuration tab.

3. In the Manage domain section, enter the virtual domain name, for example h5app.com .

Notes:

4. Check I’ve confirmed the above information is accurate, and submit without any further change., and then
click Save.

5. In the Manage keys section, upload the key file.

Notes:

Generate private key:

openssl genrsa -out private_key.pem 2048

Generate public key：

openssl rsa -in private_key.pem -outform PEM -pubout -out public.pem

6. Check I’ve confirmed the above information is accurate, and submit without any further change., and then
click Upload. Offline package configuration is completed.

What to do next
Generate offline packages

Based on different requirements, you can encapsulate different businesses into an offline package, and then
distribute the package through the release platform to update the client-side resource.

Generating an offline package mainly includes the following two steps:

1. Build a frontend .zip package

2. Generate an .amr package online

Build a frontend .zip package
The paths of the resource packages vary by package type:

Global resource package

Normal resource package

5.Manage offline packages
5.1. Configure offline packages

5.2. Generate offline packages

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 28

Note

Global resource package and normal resource package cannot coexist in the same H5 offline
package.

Offline package ID (namely the top-level directory mentioned below) must be a 8-digit number.

Global resource package
You can place the common resource which is referenced by other normal resource packages in the global
resource package. It is required to specify the resource path within the package with following rules:

Top-level directory: Offline package ID, for example: 77777777.

Second-level directory: The server’s domain address that is accessible to the resource.

For public cloud: The secondary directory should be fixed as mcube-prod.mpaascloud Otherwise, the
acceleration capability of real-time publishing and docking will not be available.

For private cloud: Refer to the domain address of mdsweb server deployed in the private cloud.

Third-level directory: In the format of appId_workspaceId , for example 53E5279071442_test .

Avoid using special characters in folder names, file names, and files for public resource files. Special
characters are characters that will be converted by the urlencode function. What follows the third-level
directory is your custom public resource.

After the resource files are organized according to the above rules, you can fast locate the paths of resource
files as in the following formats.

Resource files on public cloud: http://domain/appID_workspace/resource file path

Resource files on private cloud: http://domain/mcube/appID_workspace/resource file path

Note

For the resource files on private cloud, you need to add /mcube after the second-level directory (server
domain name) in the file path.

Example:

In public cloud, the second-level directory is fixed to mcube-prod.oss-cn-hangzhou.aliyuncs.com , thus the
path of the resource file common.js in the following figure is https://mcube-prod.oss-cn-
hangzhou.aliyuncs.com/53E5279071442_test/common.js .

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 29

In private cloud, the second-level directory is the domain name of the mdsweb server deployed in private
cloud. Taking mdsweb-outer.alipay.net as an example, the path of the resource file common.js in the
following figure is https://mdsweb-outer.alipay.net/mcube/53E5279071442_test/common.js .

Note

The absolute length of the public resource cannot exceed 100 characters, otherwise the client
might fail to load the resource and the page goes blank.

The server does not control the global resource package version. You can customize the version by
adding a file directory structure after the third-level directory according to actual needs.

In private cloud, if the file storage format used by the server is hdfs or afs, you need to add a
directory before the third-level directory mentioned above. The new directory name is the name of
the storage space (bucket) in the mdsweb server.

To reference public resources, it means accessing the content of global resource packages via
normal offline packages, so the access path must be absolute path, such as https://mcube-prod.oss-
cn-hangzhou.aliyuncs.com/53E5279071442_test/common.js .

Normal resource package
You can place the relevant frontend resources such as HTML, CSS, and JavaScript into an offline package based
on your business. The directory structure is as follows:

Top-level directory: Offline package ID, for example: 20171228.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 30

Second-level and the following directories are your custom public resource. It is best to save all frontend
files in a /www directory, and set a main entry file, for example: /www/index.html .

Generate the .zip package
After configuring the path of resource package, you can directly compress the whole directory where the appId
is located into a .zip package.

Generate an .amr package on line
Log in to the mPaaS console, navigate to Mobile Delivery Service > Manage offline packages, and upload the
 .zip package generated in the previous step to the Mobile Delivery Service platform to generate a .amr

package. For detailed steps, see Mobile Delivery Service > Create offline packages.

Important

When you create an offline package, the minimum version of iOS client must be lower than the
Product Version field (see the figure below) in the info.plist file. You are recommended to set the
minimum version of iOS client to 1.0.0.

The Product Version in the info.plist file should be consistent with the value of Bundle versions
string, short, otherwise the offline package may not take effect.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 31

When creating an HTML5 offline package, you must complete the basic configuration of the offline package.

Prerequisites
You have configured an offline package on the Manage configurations page. For more information, see
Configure offline packages.

About this task
You can create a single HTML5 offline package, or create multiple offline packages at a time by batch
importing HTML5 offline package files.

When you upload the first offline package for an HTML5 app, you must select the offline package type. Once
the offline package type is selected, it can not be changed. Each HTML5 app has only one type of offline
package.

Procedure

Create a single offline package
Go to the mPaaS console, and perform the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.

2. On the offline package list page, click Create an HTML5 app. You can skip this step if an HTML5 application
already exists.

3. In the Create an HTML5 app window, enter the HTML5 app ID and HTML5 app name, and then click Submit.
You can skip this step if an HTML5 application already exists.

HTML5 app ID must be a 8-digit number.

4. Select the HTML5 app from the HTML5 app list, and click Add an offline package on the right.

5. Configure the following information in the Basic information section:

Resource package type: Select Global resource package or Normal resource package.

5.3. Create offline packages

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 32

HTML5 app version: Enter the version of the offline package, for example, 1.0.0.1.

File: Upload the offline package file in .zip format.

Client version: Select the type of the client and set the version range. Only the clients within the version
range can receive the new offline packages.

Note

At least one client type is required. If both Android and iOS are selected, you should ensure that
the both clients adopt the same strategy on the maximum version. Namely, the maximum
versions of both clients should be either kept empty (system default) or customized
consistently.

If the maximum version is kept empty, it means all future versions will be supported. It is
recommended to use the default version, because the client version after upgrade may be
higher than that you filled and cause that offline package becomes ineffective.

The version of iOS client must be lower than the value of Product Version field in the project’s
 info.plist file.

6. In the Configuration information section, configure the following information:

URL of main entrance: Optional. The homepage of the offline package.

Note

A complete path is required, such as /www/index.html , where /www is the name of second-level
directory you customized.

Virtual domain: The virtual domain name that you enter when you configure the offline package is
automatically displayed.

Extended information: Optional. Enter the page loading parameters in key-value (KV) formats. Separate
multiple KV pairs with commas (,).

Note

On the mPaaS platform, you can configure a request interval for HTML5 offline packages. You can
apply the settings to a single offline package or globally.

Single package configuration: Apply to the current offline package only. In the Extended
information field, you can enter {"asyncReqRate":"1800"} to set the request interval, where
 1800 indicates the interval. The interval is measured in seconds and ranges from 0 to 86400

seconds (0 to 24 hours). Value 0 indicates no limit on request interval.

Global configuration: Apply to all offline packages. This parameter is specified in the client
code. For more information, see Access Android client and Access iOS client.

Network for download: Choose the network environment for downloading the offline package. You can
choose Wi-Fi only or All networks.

If you select Wi-Fi only, the offline package will be automatically downloaded in the background only
with Wi-Fi connection.

If you select All networks, in non-Wi-Fi network, the offline package will still be automatically
downloaded consuming user’s mobile data. Thus, set it with caution.

Time of installation: Select the time to install the offline package.

If you select Not preload, the offline package will be installed only when the offline package is opened.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 33

If you select Preload, the offline package will be automatically installed after the offline package is
downloaded.

7. Check I confirm the above information is accurate, and submit without any further change, then click Submit.

Batch import offline packages
When creating multiple offline packages, you can choose to import the packages in batch to improve efficiency
and avoid errors during configuration.

Note

After importing, if the app to which the offline package belongs does not exist on mPaaS, an HTML5
app will be created automatically.

After importing, if the app to which the offline package belongs already exists on mPaaS, the
package will be added to the HTML5 app when configuration is complete.

Go to the mPaaS console, and perform the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management, then click Batch
import HTML5 app.

2. In the popup window, follow the on-screen instructions to upload the ZIP offline package file and the
configuration file.

Note

The file size cannot exceed 300 MB, and the number of offline packages cannot exceed 100.

The offline package resource file must be named after the offline package ID, which must be 8-
digit number.

3. In the import result list, click Edit in the Operation column to edit the offline package. Refer to Create a
single offline package for details about the configurations.

Note

The default version of imported offline packages follow the rules below, and you can edit the versions
based on your needs.

If the app to which the offline package belongs does not exist on mPaaS, the default version of
the package is 0.0.0.1.

If the app to which the offline package belongs already exists on mPaaS, the default version of
the package is to add 1 to the currently highest version number.

4. After completing editing all the packages, check The information can’t be modified after submission, and
click Submit.

The submitted offline package information will be verified. If verification fails, error message will appear. If
verification succeeds, the HTML5 offline package appears on the HTML5 offline package management page,
which indicates that the offline package has been created successfully.

What to do next
Release offline packages

To release the offline package that you created, you must create a release task and complete relevant
configurations.

5.4. Release offline packages

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 34

Procedure
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Delivery Service > Manage offline packages.

2. On the offline package list page, select the offline package and version to be released, and then click
Create a release task.

3. On the Create a release task page, complete the following configurations:

Release type: You can choose Gray release or Official release.

Gray release: Before the official release, release the package to some of the users to test and validate
the functionality of the new package.

Official release: Release the package officially to all the users.

Release model: Select Whitelist or Time window. Available only when Gray release is selected.

If you select Whitelist, select a whitelist in Whitelist.

Note: About creating whitelists, see Manage whitelists.

If you select Time window, select the End time and Users count.

Release description: Enter the description about the offline package release task.

Advanced rule: You can add one or more advanced rules for the release task. Optional field, available only
when Gray release is selected.

Type: Select City, Model, Network or Device OS version.

Operation type: Select the operation type.

Resource value: From the drop-down menu, select the resource value that corresponds to the selected
operation type.

4. Click OK.

Result
On the offline package list page, you can find the status of the released package: Gray releasing or Official
releasing.

Note: Due to the cache refresh mechanism of the server, the client will not receive it until about 1 minute later
after you release the the offline package from the console.

What to do next
Manage the released offline packages

You can manage the released HTML5 offline packages. The management operations include viewing,
suspending and ending release tasks, and deleting HTML5 offline packages.

View offline package release tasks
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.

2. In the HTML5 app list, select the target app, choose the offline package version that you want to view from

the corresponding offline package list, and click unfold icon () left to the offline package version.

3. In the unfolded task list, click View to view the release task details.

Suspend offline package release tasks

5.5. Manage offline packages

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 35

Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.

2. In the HTML5 app list, select the target app, choose the offline package version that you want to suspend

from the corresponding offline package list, and click unfold icon () left to the offline package version.

3. Click Pause, and then click OK to confirm the operation.

To resume releasing the offline package, click Continue.

Terminate offline package release tasks
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.

2. In the HTML5 app list, select the target app, choose the offline package version that you want to suspend

from the corresponding offline package list, and click unfold icon () left to the offline package version.

3. Click End, and then click OK to confirm the operation.

Note

After terminating a release task, to release the offline package again, you need to create a new
release task.

The offline package cannot be downloaded when its release task is terminated. But other versions
of the package will not be affected. For example, the release of offline package V1.1 is terminated,
and offline package V1.0 is still in release, then package V1.1 cannot be downloaded on the client,
while package V1.0 can still be downloaded.

Export offline packages
You can download the resource file (.arm) or configuration file (.json) of a single offline package

Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.

2. In the HTML5 app list, select the target app, choose the offline package version from the corresponding
offline package list, and click Download AMR file or Download configuration file to download the resource
file or configuration file.

Delete an HTML5 app
Log in to the mPaaS console, and complete the following steps:

1. On the left navigation bar, click Mobile Delivery Service > Offline package management.

2. In the HTML5 app list, select the target app that you want to delete, hover mouse over the app, and click
the deletion icon to delete it. When the app is deleted, all the offline packages and resource files of the app
will be deleted.

Note

The HTML5 app cannot be restored once deleted.

5.6. OpenAPI
5.6.1. Overview and preparation

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 36

MDS provides Java SDK for offline package release, enabling developers to configure, create, release, and
manage offline packages by calling the API.

Overview
MDS provides Java SDK for offline package release, enabling developers to configure, create, release, and
manage offline packages by calling the API.

Preparation
Before using the open API, you need to obtain AccessKey, App ID, Workspace ID and Tenant ID, configure
Maven dependencies and configure file uploading.

Obtain AccessKey
AccessKey includes AccessKey ID and AccessKey Secret. Click here for obtaining method.

AccessKey ID: used to identify users.

AccessKey Secret: used for user authentication. MUST be kept safe.

Obtain App ID, Workspace ID and Tenant ID
1. Log in to mPaaS console, and enter the App.

2. In Overview page, click Code configurations (choose Android or iOS based on your needs)> Download
configuration file > Download now. You can view App ID and Workspace ID in the Code configurations panel.

Configure Maven dependencies
Before using the API, you need to complete the following Maven dependency configurations.

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-mpaas</artifactId>
 <version>3.0.5</version>
</dependency>

<dependency>
 <groupId>com.aliyun</groupId>
 <artifactId>aliyun-java-sdk-core</artifactId>
 <optional>true</optional>
 <version>[4.3.2,5.0.0)</version>
</dependency>

Code sample
The following shows the code sample of using Client in Maven:

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 37

https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A%252F%252Fmpaaspub.console.aliyun.com%252F

 private static final String REGION_ID = "cn-hangzhou"; //Region ID, the default is cn-hangzhou
 private static final String ACCESS_KEY_ID = "*****************"; //AccessKey ID of RAM account
 private static final String ACCESS_SECRET = "******************"; //AccessKey Secret of RAM account
 private static final String PRODUCT = "mpaas"; //Product name
 private static final String END_POINT = "mpaas.cn-hangzhou.aliyuncs.com"; //The endpoint that is called
 DefaultProfile.addEndpoint(REGION_ID, PRODUCT, END_POINT);
 DefaultProfile profile = DefaultProfile.getProfile(REGION_ID, ACCESS_KEY_ID, ACCESS_SECRET);
 IAcsClient iAcsClient = new DefaultAcsClient(profile);
 QueryMcubeVhostRequest queryMcubeVhostRequest = new QueryMcubeVhostRequest();
 queryMcubeVhostRequest.setAppId(APP_ID);
 queryMcubeVhostRequest.setWorkspaceId(WORKSPACE_ID);
 queryMcubeVhostRequest.setTenantId(TENANT_ID);
 QueryMcubeVhostResponse acsResponse = null;
 try {
 acsResponse = iAcsClient.getAcsResponse(queryMcubeVhostRequest);
 System.out.println(acsResponse.getResultCode());
 System.out.println(acsResponse.getQueryVhostResult());
 } catch (ClientException e) {
 e.printStackTrace();
 }

Configure file uploading
Since file streaming is not allowed in all APIs, to upload a file, you need to upload it to OSS first by calling the
upload tool class, and then send the returned OSS address as a parameter to the specified API.

You can download the file upload tool class OssPostObject.java.zip.

Code sample
The following shows the code sample of file uploading:

 GetMcubeFileTokenRequest getMcubeFileTokenRequest = new GetMcubeFileTokenRequest();
 getMcubeFileTokenRequest.setAppId(APP_ID);
 getMcubeFileTokenRequest.setOnexFlag(true);
 getMcubeFileTokenRequest.setTenantId(TENANT_ID);
 getMcubeFileTokenRequest.setWorkspaceId(WORKSPACE_ID);
 GetMcubeFileTokenResponse acsResponse = iAcsClient.getAcsResponse(getMcubeFileTokenRequest);
 System.out.println(JSON.toJSONString(acsResponse));

 GetMcubeFileTokenResponse.GetFileTokenResult.FileToken fileToken = acsResponse.getGetFileTokenResult().ge
tFileToken();
 OssPostObject ossPostObject = new OssPostObject();
 ossPostObject.setKey(fileToken.getDir());
 ossPostObject.setHost(fileToken.getHost());
 ossPostObject.setOssAccessId(fileToken.getAccessid());
 ossPostObject.setPolicy(fileToken.getPolicy());
 ossPostObject.setSignature(fileToken.getSignature());
 ossPostObject.setFilePath("your/local/file/path");
 String s = ossPostObject.postObject();

Refer to Obtain upload file token for descriptions about GetMcubeFileTokenRequest .

General parameter description
All interfaces contain three parameters: appId , workspaceId and tenantId . The meanings of these three
parameters are as follows. The three parameters will be omitted in subsequent interface descriptions of this
document.

5.6.2. API description

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 38

https://gw.alipayobjects.com/os/bmw-prod/6c545cbb-ed5e-4e71-bdcd-850fe6dfad9d.zip

Parameter Type Description

appId String App ID.

workspaceId String Workspace ID.

tenantId String Tenant ID.

General response description

Parameter Type Description

resultCode String
Normally, the code returned is OK .
Other values indicate that the API
request is abnormal.

requestId String Request ID.

resultMessage String Returned value after query failure.

***Result Object
The objects returned. The actual
meaning varies with the value
returned.

The objects returned include the following fields:

Name Type Description

resultMsg String Returned value after query failure.

success Boolean Whether the query is successful.

Create virtual domain

Request - CreateMcubeVhostRequest

Parameter Type Description

vhost String Virtual domain name.

Response - CreateMcubeVhostResponse

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 39

{
 "createVhostResult":{
 "data":"success",
 "resultMsg":"",
 "success":true
 },
 "requestId":"F9C681F2-6377-488D-865B-1144E0CE69D2",
 "resultCode":"OK"
}

Response description

Name Type Description

createVhostResult Object
The objects returned, includes
general response only. See General
response description for details.

Query virtual domain

Request - QueryMcubeVhostRequest
Includes general parameters only. See General parameter description for details.

Response - QueryMcubeVhostResponse

{
 "queryVhostResult":{
 "data":"test.com",
 "resultMsg":"",
 "success":true
 },
 "requestId":"637D5BE0-0111-4C53-BCEE-473CFFA0DBAD",
 "resultCode":"OK"
}

Response description

Response name Type Description

queryVhostResult Object The objects returned. See the table
below for meanings.

The objects returned include the following fields:

Name Type Description

data String The virtual domain name queried.

Query if key file exists

Request - ExistMcubeRsaKeyRequest
Includes general parameters only. See General parameter description for details.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 40

Response - ExistMcubeRsaKeyResponse

{
 "checkRsaKeyResult":{
 "data":"fail",
 "resultMsg":"",
 "success":false
 },
 "requestId":"8F76783A-8070-4182-895D-14E5D66F8BA3",
 "resultCode":"OK"
}

Response description

Response name Type Description

checkRsaKeyResult Object The objects returned. See the table
below for meanings.

The objects returned include the following fields:

Name Type Description

data String
Query result: fail indicates the
key does not exist, and success
indicates the key exists.

Obtain upload file token

Request - GetMcubeFileTokenRequest

Parameter Type Description

onexFlag Boolean The fixed value is true .

Response - GetMcubeFileTokenResponse

{
 "getFileTokenResult":{
 "fileToken":{
 "accessid":"LTAI7z7XPfKU****",
 "dir":"mds/tempFileForOnex/ONEXE9B092D/test/PUQYHL/8b574cb7-3596-403f-a0e9-208660fc2081/",
 "expire":"1584327372",
 "host":"https://mcube-test.oss-cn-hangzhou.aliyuncs.com",
 "policy":"QwM2YtYTBlOS0yMDg2NjBmYzIwODEvIl1dfQ==",
 "signature":"kisfP5YhbPtmES8+w="
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"8BAA3288-662E-422C-9960-2EEBFC08369F",
 "resultCode":"OK"
}

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 41

Response description

Response name Type Description

getFileTokenResult Object
The objects returned, includes
general response only. See General
response description for details.

Upload key file

Request - UploadMcubeRsaKeyRequest

Parameter Type Description

onexFlag Boolean The fixed value is true .

fileUrl String The save address of the key file in
OSS.

Response - UploadMcubeRsaKeyResponse

{
 "requestId":"519E35CF-CC60-4890-8C8E-89A98CEA6BB0",
 "resultCode":"OK",
 "uploadRsaResult":{
 "data":"processed successfully",
 "resultMsg":"",
 "success":true
 }
}

Response description

Response name Type Description

uploadRsaResult Object
The objects returned, includes
general response only. See General
response description for details.

Obtain offline package app list

Request - ListMcubeNebulaAppsRequest
Includes general parameters only. See General parameter description for details.

Response - ListMcubeNebulaAppsResponse

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 42

{
 "listMcubeNebulaAppsResult":{
 "nebulaAppInfos":[
 {
 "h5Id":"12345678",
 "h5Name":"12345678"
 },
 {
 "h5Id":"12345679",
 "h5Name":"openapiTest"
 }
],
 "resultMsg":"",
 "success":true
 },
 "requestId":"BE728F09-6EBD-4688-9329-896813EAD075",
 "resultCode":"OK"
}

Create offline package app

Request - CreateMcubeNebulaAppRequest

Parameter Type Description

h5Name String Offline package name.

h5Id String Offline package ID. 8 digits.

Response - CreateMcubeNebulaAppResponse

{
 "createNebulaAppResult":{
 "resultMsg":"",
 "success":true
 },
 "requestId":"5B588AFE-8D58-4460-B0AA-6A48A9FD0852",
 "resultCode":"OK"
}

Delete offline package app

Request - DeleteMcubeNebulaAppRequest

Parameter Type Description

h5Id String Offline package ID. 8 digits.

Response - DeleteMcubeNebulaAppResponse

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 43

{
 "deleteMcubeNebulaAppResult":{
 "resultMsg":"",
 "success":true
 },
 "requestId":"E24C760E-4849-4341-91C6-6DA97F5B6B76",
 "resultCode":"OK"
}

Upload offline package

Request - CreateMcubeNebulaResourceRequest

Name Type Description

h5Id String ID of the HTML5 app.

h5Name String Name of the HTML5 app.

h5Version String Version of the offline package. Must
be unique in an HTML5 app.

mainUrl String

Main URL of the offline package.
Should satisfy the regular
expression pattern:
 ^/[\w|/]+\.html$.

vhost String Virtual domain name of the HTML5
app.

extendInfo String Extended fields in JSON format.

autoInstall Integer

Specify the network in which
downloads are allowed.

0: Wi-Fi only (Without Wi-Fi
connection, download starts only
when users use the app).

1: All networks (Consumes cellular
data. Do not choose this mode
unless in special situations.)

resourceType Integer

Resource type. One HTML5 app can
have only one resource type.

0: Global resource.

1: Private resource.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 44

installType Integer

Specify whether to preload the
offline package before installing it.

0: Not preload (install only when the
user enters the offline package
page)

1: Preload (automatically install
after the offline package is
downloaded)

platform String Platform. Includes all, Android and
iOS.

clientVersionMin String

Minimum client version. Minimum
version is required when platform is
chosen. The format is aaa;bbb .
 aaa indicates iOS client version,

and bbb indicates Android client
version. The semicolon ; cannot be
omitted. If Android is chosen as the
platform, then the value is ;bbb .

clientVersionMax String

Maximum client version. Can be
empty. If the value of platform is
 all , then this value must appear in

pairs. That is, iOS and Android
version must both be included, or
neither of them is included.

fileUrl String The OSS URL of the offline package
file. The package must be a ZIP file.

repeatNebula Integer

Whether to reuse the global
package. Required when the
resource package is global resource.

0: No,

1: Yes.

onexFlag Boolean The fixed value is true .

Name Type Description

Response - CreateMcubeNebulaResourceResponse

{
 "createMcubeNebulaResourceReslult":{
 "nebulaResourceId":"4154",
 "resultMsg":"",
 "success":true
 },
 "requestId":"DFCA28DF-0F97-4C41-B3D4-351D284B51E7",
 "resultCode":"OK"
}

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 45

 nebulaResourceId is the ID of the offline package uploaded.

Obtain resource package list

Request - ListMcubeNebulaResourcesRequest

Parameter Type Description

h5Id String HTML5 app ID.

Response - ListMcubeNebulaResourcesResponse
Response description

Response name Type Description

appCode String appId+"-"+workspaceId

autoInstall Integer

The meaning is the same as the
parameter in the offline package
upload request. See Upload offline
package for details.

clientVersionMax String

The meaning is the same as the
parameter in the offline package
upload request. See Upload offline
package for details.

clientVersionMin String

The meaning is the same as the
parameter in the offline package
upload request. See Upload offline
package for details.

creator String Creator. Currently not in use.

debugUrl String Has no meaning in current response.

downloadUrl String Download address of offline
package ARM file.

extendInfo String The extended fields passed in the
offline package upload request.

extraData String Extended parameters.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 46

fallbackBaseUrl String

Offline package fallback address,
delimited by semicolon (;). The
address before ; is intranet
address, and the address after ;
is internet address.

fileSize String File size

gmtCreate Date Time of creation

gmtModified Date Time of update

h5Id String ID of the HTML5 app.

h5Name String Name of the HTML5 app.

h5Version String Version of the current offline
package package

id Long Primary key.

installType Integer

The meaning is the same as the
parameter in the offline package
upload request. See Upload offline
package for details.

lazyLoad Integer Lazy loading. Currently the value is
0.

mainUrl String

The meaning is the same as the
parameter in the offline package
upload request. See Upload offline
package for details.

md5 String md 5 of the offline package file.

memo String Download address of the offline
package h5.json file.

metaId Long Has no meaning in current response.

modifier String Modifier. Currently not in use.

Response name Type Description

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 47

platform String

The meaning is the same as the
parameter in the offline package
upload request. See Upload offline
package for details.

publishPeriod Integer

Release status.

1: Internal gray release

2: External gray release

3: Formal release

4: Rollback release

5: Release task ends.

releaseVersion String Release version.

resourceType Integer

The meaning is the same as the
parameter in the offline package
upload request. See Upload offline
package for details.

status Integer Status

Response name Type Description

Create Offline package release task

Request - CreateMcubeNebulaTaskRequest

Parameter Type Required Description

publishType Integer Yes

Release type.

2: Gray release

3: Official release

publishMode Integer Yes

Release mode. If
publishType is 3 , this
field should be empty.

1: Whitelist

2: Time window

memo String No Release note.

id Long Yes
Only 0 is allowed. The
ID indicates creation, and
cannot be modified.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 48

greyEndtimeData String No

End time of time window
grey release. Required
when publishMode is
 2 . Format: YYYY-MM-

dd HH:mm:ss . The time
must be greater than the
current time and less than
7 days from the current
time.

greyEndTime Date No
Date type. The value is
same as that of
 greyEndTimeData .

greyNum Integer No

Number of users in time
window grey release.
Required when
 publishMode is 2 .

whitelistIds String No

Primary key ID of whitelist.
Required when
 publishMode is 1 .

Separate multiple IDs with
comma , .

packageId Long Yes Primary key ID of the
resource package.

greyConfigInfo String No

Advanced rule, JSON
string. See the table
below for meanings.

Example:

[{“ruleElement”:”city”,
”operation”:1,”value”:
”Shanghai,Beijing,Tianjin
”},
{“ruleElement”:”mobile
Model”,”operation”:2,
”value”:”REDMI NOTE
3,VIVO X5M”},
{“ruleElement”:”osVers
ion”,”operation”:3,”va
lue2”:”9.2.1”,”value1
”:”9.2.1”,”value”:”9.
2.1-9.2.1”}]

Parameter Type Required Description

Advanced rule description

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 49

Name Type Description

ruleElement String

Rule type:

city: City

mobileModel: Mobile phone model

netType: Network

osVersion: Device OS version

value String

Rule value. Separate multiple values
with comma (,). When operation is
 3 or 4 , the value is in aa-bb

format, in which aa is the smaller
value, and bb is the greater
value.

operation Integer

Operation:

1: Include

2: Exclude

3: Within range

4: Out of range

If ruleElement is city ,
 mobileModel and netType ,

operation value can only be 1 or
 2 If ruleElement is osVersion ,

the value of operation can be any
one of the four value.

Response - CreateMcubeNebulaTaskResponse

{
 "createMcubeNebulaTaskResult":{
 "nebulaTaskId":"6664",
 "resultMsg":"",
 "success":true
 },
 "requestId":"BBDF54E1-2783-4E5A-AE19-F7BC3A1BB3C2",
 "resultCode":"OK"
}

 nebulaTaskId is the created release task ID.

Obtain release task list

Request - ListMcubeNebulaTasksRequest

Parameter Type Description

id Long ID of the offline package
corresponding to the release task.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 50

Response - ListMcubeNebulaTasksResponse

{
 "listMcubeNebulaTaskResult":{
 "nebulaTaskInfos":[
 {
 "appCode":"ONEX97C5D29290957-default",
 "bizType":"nebula",
 "creator":"",
 "gmtCreate":"2021-02-01 14:16:58",
 "gmtModified":"2021-02-01 14:16:58",
 "gmtModifiedStr":"2021-02-01 14:16:58",
 "greyConfigInfo":"",
 "greyEndtimeData":"",
 "greyNum":0,
 "greyUrl":"",
 "id":6664,
 "memo":"test",
 "modifier":"",
 "packageId":4154,
 "percent":0,
 "platform":"all",
 "productId":"ONEX97C5D29290957-default-12345678",
 "productVersion":"1.0.0.1",
 "publishMode":4,
 "publishType":3,
 "releaseVersion":"20210201141121",
 "status":1,
 "syncResult":"",
 "taskName":"12345678",
 "taskStatus":1,
 "taskType":0,
 "taskVersion":1612160218556,
 "upgradeNoticeNum":0,
 "upgradeProgress":"",
 "whitelistIds":""
 }
],
 "resultMsg":"",
 "success":true
 },
 "requestId":"B9A07543-4B8B-43D0-AB33-7F2ACB954909",
 "resultCode":"OK"
}

Response description

Name Type Description

appCode String appId+workspaceId

bizType String The value for offline package is
 nebula .

bundles Array Currently not in use.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 51

creator String Currently not in use.

gmtCreate Date Time of creation.

gmtModified Date Time of update.

gmtModifiedStr String Update time string.

greyConfigInfo String

Advanced rule string, different from
that in the upload request. See
greyConfigInfo explanation for
details.

greyEndtime Date End time of time window grey
release.

greyEndtimeData String End time string of time window grey
release.

greyNum Integer Number of users in time window
grey release.

id Long Primary key ID of current release
task.

memo String Release note.

modifier String Modifier. Currently not in use.

packageId Long ID of the offline package
corresponding to the current task.

percent Integer Grey percent. Currently the value is
0.

platform String Platform of the release task.
Includes all, Android and iOS.

productId String
Product ID. The format is appId +
workspaceId + h5id .

productVersion String ID of the offline package.

Name Type Description

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 52

publishMode Integer

Release mode:

0: Default

1: Whitelist

2: Time window

publishType Integer

Release type:

2: Gray release

3: Official release

releaseVersion String Internal release version.

resIds String ID of the corresponding offline
package.

status Integer

Status:

0: Invalid

1: Valid

syncResult String Currently not in use

taskName String Task name, same as the HTML5 app
name.

taskStatus Integer

Task status:

0: To be released

1: Release in progress

2: Finished

3: Paused

taskType Integer

Task type:

0: Ordinary task.

1: Rollback task.

taskVersion Long Task version, uses the time of task
creation.

upgradeNoticeNum Integer Currently not in use

upgradeProgress String Currently not in use

Name Type Description

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 53

whitelistIds String Primary key ID of whitelist, delimited
by comma (,).

Name Type Description

greyConfigInfo explanation

Name Type Description

operator String
Relationship of the rules. and
means all the rules in subRules
must be met at the same time.

defaultResult boolean The default returned result.

subRules List Rule list.

operator String

Rule name:

contains: Include

excludes: Exclude

vLimitIn: Within range

vLimitOut: Out of range

left List<String>/Object

When operator value is
 contains or excludes , the

value is a list of elements, and
each element represents a rule
value.

When operator value is
 vLimitIn or vLimitOut , it is an

object, and lower represents
the smaller value, and upper
represents the greater value.

right String Rule type name.

defaultResult Boolean Default result.

Obtain release task details by ID

Request - GetMcubeNebulaTaskDetailRequest

Parameter Type Description

taskId Long Primary key ID of the release task.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 54

Response - GetMcubeNebulaTaskDetailResponse

{
 "getMcubeNebulaTaskDetailResult":{
 "nebulaTaskDetail":{
 "appCode":"ONEX97C5D29290957-default",
 "appId":"",
 "atomic":0,
 "baseInfoId":0,
 "bizType":"nebula",
 "creator":"",
 "cronexpress":0,
 "downloadUrl":"https://pre-mpaas.cn-hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-default/12345678/1.0
.0.1_all/nebula/12345678_1.0.0.1.amr;https://pre-mpaas.cn-hangzhou.oss.aliyuncs.com/ONEX97C5D29290957-defau
lt/12345678/1.0.0.1_all/nebula/12345678_1.0.0.1.amr",
 "extraData":"{"resourceType":"1"}",
 "fileSize":"0",
 "fullRepair":0,
 "gmtCreate":"2021-02-01 14:16:58",
 "gmtModified":"2021-02-01 14:16:58",
 "gmtModifiedStr":"2021-02-01 14:16:58",
 "greyConfigInfo":"",
 "greyEndtimeData":"",
 "greyNum":0,
 "greyUrl":"",
 "id":6664,
 "issueDesc":"",
 "memo":"test",
 "modifier":"",
 "ossPath":"",
 "packageId":4154,
 "percent":0,
 "platform":"all",
 "productId":"ONEX97C5D29290957-default-12345678",
 "productVersion":"1.0.0.1",
 "publishMode":4,
 "publishPeriod":3,
 "publishType":3,
 "quickRollback":0,
 "releaseVersion":"20210201141121",
 "ruleJsonList":[

],
 "sourceId":"",
 "sourceName":"",
 "sourceType":"",
 "status":1,
 "syncResult":"",
 "syncType":0,
 "taskName":"12345678",
 "taskStatus":1,
 "taskType":0,
 "taskVersion":1612160218556,
 "upgradeNoticeNum":0,
 "upgradeProgress":"",
 "whitelistIds":"",
 "workspaceId":""
 },
 "resultMsg":"",
 "success":true
 },
 "requestId":"072AE251-B9F8-4A44-A621-9F0325EECC1E",

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 55

 "requestId":"072AE251-B9F8-4A44-A621-9F0325EECC1E",
 "resultCode":"OK"
}

Response description

Response name Type Description

appCode String appId+workspaceId

appId String Currently not in use.

atomic Integer

Whether is package is atomic or not.
Currently can be ignored.

1: Yes.

0: No.

baseInfoId Long
The primary key ID of basic
information. Currently can be
ignored.

bizType String The value is nebula for offline
package.

bundles List Currently not in use.

creator String Currently not in use.

cronexpress Integer

0: Execute once.

1: Execute multiple times.

The value is 0 for iOS.

downloadUrl String

Offline package download address.
The address before ; is intranet
address, and the address after ;
is internet address.

extraData String Extended data in JSON format.

fileSize String File size

gmtCreate Date Time of creation

gmtModified Date Time of update

greyConfigInfo String Advanced rule string.

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 56

greyEndTime Date End time of time window grey
release.

greyEndtimeData String End time string of time window grey
release.

id Long Primary key ID

issueDesc String Issue description. Currently not in
use.

mds String md 5 of the offline package file.

memo String Release note.

modifier String Modifier. Currently not in use.

ossPath Stirng Currently not in use.

packageId Long Offline package ID.

percent Integer Gray percent. Currently not in use.

platform String Platform, all, iOS, Android.

product_id Sting appId+workspaceId + H5Appid

productVersion String Offline package version.

resIds String Offline package ID.

ruleJsonList List Release advanced rules. See the
sample above for details.

sourceId String
Source ID. Currently not in use for
offline package.

sourceName String Currently not in use for offline
package.

sourceType String Source type. Currently not in use for
offline package.

Response name Type Description

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 57

status Integer

Status.

0: Invalid,

1: Valid.

syncResult String Currently not in use for offline
package.

syncType String Currently not in use for offline
package.

taskName String Task name

taskStatus Integer

Task status:

0: To be released

1: Release in progress

2: Finished

3: Paused

taskType Integer

Task type:

0: Ordinary task.

1: Rollback task.

taskVersion Long Task version, uses the time of task
creation.

upgradeNoticeNum Integer Currently not in use

upgradeProgress String Currently not in use

vmType Stirng

Android emulator type, separated
by comma.

1: art

2: dalvik

3: lemur

4: aoc

whitelist List
Whitelist information of the offline
package release task. Refer to
Manage whitelists for detalis.

Response name Type Description

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 58

Change offline package task status

Request - ChangeMcubeNebulaTaskStatusRequest

Parameter Type Description

bizType String Pass nebula for offline package.

packageId Long Offline package ID.

taskId Long Release task ID.

taskStatus Integer

The status to change to.

0: To be released

1: Release in progress

2: Finished

3: Paused

Response - ChangeMcubeNebulaTaskStatusResponse

{
 "changeMcubeNebulaTaskStatusResult":{
 "resultMsg":"",
 "success":true
 },
 "requestId":"595F4CB4-ACFE-4A5B-AF5B-4ED837CAEF95",
 "resultCode":"OK"
}

Mobile Delivery Service User Guide·Manage offline pac
kages

> Document Version: 20230209 59

This topic briefly describes how to fast integrate the switch configuration function to the Android client.

The switch configuration service enables a client to dynamically modify the processing logic in the client code
without releasing a new client version. The client controls related processing based on the switch value
dynamically obtained from the backend. With the switch configuration service, you can configure, modify, and
push various switches. A switch is a key-value pair.

Currently, you can access switch configuration function through Native AAR, mPaaS Inside, or Portal & Bundle.

The complete access process mainly includes the following 3 steps:

1. Add SDK

2. Initialize mPaaS (only required for Native AAR and mPaaS Inside)

3. Use the SDK

Prerequisites
If you access switch configuration through Native AAR, ensure that you have added mPaaS to project.

If you access switch configuration through mPaaS Inside, ensure that you have completed the mPaaS Inside
access process.

If you access switch configuration in componentized access mode (through Portal & Bundle projects), ensure
that you have completed the componentized access process.

Add SDK

Native AAR mode
Follow the instructions in AAR component management to install the CONFIGSERVICE component in the project
through Component management (AAR).

mPaaS Inside mode
Install the CONFIGSERVICE component in the project through Component management (AAR).

For more information, see Manage component dependencies > Add/delete component dependencies.

Componentized access mode
Install the CONFIGSERVICE component in the Portal and Bundle projects through Component management
(AAR).

For more information, see Manage component dependencies > Add/delete component dependencies.

Initialize mPaaS
If you access MAS through Native AAR or mPaaS Inside, you must initialize mPaaS.

Add the following codes in the object Application :

6.Configuration Management
6.1. Android

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 60

public class MyApplication extends Application {

 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);
 // Set mPaaS initialization callback
 QuinoxlessFramework.setup(this, new IInitCallback() {
 @Override
 public void onPostInit() {
 //This callback indicates that mPaaS initialization has been done, and relevant mPaaS calls can be performed
here
 }
 });
 }

 @Override
 public void onCreate() {
 super.onCreate();
 // Initialize mPaaS
 QuinoxlessFramework.init();
 }
}

Use the SDK
mPaaS provides the switch configuration management API MPConfigService to implement switch
configuration.

Complete the following steps to implement switch configuration:

1. In the mPaaS console, go to the Mobile Delivery Service > Manage configuration page, add desired switch
configuration items, and set them based on information such as the platform, whitelist, percentage, version
number, model, and Android version. For more information, see Configuration management.

2. After a switch key is released in the console, the client can call the specified API to obtain the value of the
switch key.

The switch configuration management API MPConfigService provides many APIs externally. You can
understand the function of each API based on its name. A list of APIs is provided as follows:

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 61

 public class MPConfigService {
 /**
 * Obtain switch configurations
 *
 * @param key
 * @return
 */
 public static String getConfig(String key);
 /**
 * Load switch configurations. The latest switch configurations are obtained every half an hour by default.
 */
 public static void loadConfig();
 /**
 * Load switch configurations immediately.
 *
 * @param delay Delay after which switch configurations are loaded, in ms. 0 indicates that switch configurations
are loaded immediately.
 */
 public static void loadConfigImmediately(long delay);
 /**
 * Register a listener for listening to switch configuration changes.
 * @param configChangeListener listener
 * @return
 */
 public static boolean addConfigChangeListener(ConfigService.ConfigChangeListener configChangeListener);
 /**
 * Remove the listener for listening to switch configuration changes
 * @param configChangeListener listener
 */
 public static void removeConfigChangeListener(ConfigService.ConfigChangeListener configChangeListener);
 }

Important

As a soft reference object, the listener will be reclaimed when the system has run out of memory.
Therefore, please perform switch monitoring instead of global monitoring; meanwhile, register the
listener at regular intervals and remove it after use.

Important: Since June 28, 2020, mPaaS has stopped support for the baseline 10.1.32. Please use 10.1.68 or 10.1.60
instead. For how to upgrade the baseline from version 10.1.32 to 10.1.68 or 10.1.60, see mPaaS 10.1.68 upgrade
guide or mPaaS 10.1.60 upgrade guide.

Switch configuration refers to the capability of dynamically modifying client-side code processing logic without
releasing a new version on the client. The client controls relevant processing according to the extracted
switch value that is dynamically configured at backend. By using the switch configuration service, you can
configure, modify and push various types of switches. The switch refers to key/value pair.

mPaaS provides the configuration management service ConfigService to realize switch configuration. By
default, the syncing logic is syncing a switch value at the cold start of the application, or syncing a switch
value if half an hour passed since last sync after the application returns to the foreground. In addition,
ConfigService also provides an interface for immediate sync and the logic for monitoring configuration
changes, by which configuration can be refreshed as soon as it is changed.

To realize switch configuration management, you need to add the corresponding iOS SDK, configure the
project and read the configuration.

6.2. iOS

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 62

Prerequisites
The project is connected to mPaaS. For more information, refer to: Access based on native framework and
using Cocoapods.

About this task
This document introduce how to integrate the switch configuration in details based on the switch
configuration code sample.

Add an SDK
1. In the Podfile, define mPaaS_pod "mPaaS_Config" to add the dependencies of the switch configuration

component.

2. Based on requirements, run the pod install or pod update command.

Configure a project
Note: This step is applicable to baseline 10.1.32. The project configuration feature is built in baselines 10.1.60
and 10.1.68. Therefore, you can ignore this step when baseline 10.1.60 or 10.1.68 is used.

mPaaS encapsulates the switch configuration capability to a service. and you need to register this service in
service manager before using it, as shown in the following figure.

Read the configurations

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 63

https://github.com/mpaas-demo/ios-configservice
https://guides.cocoapods.org/using/using-cocoapods.html

Values of switch keys can be dynamically released in the mPaaS console. On the left navigation pane, choose
Mobile Delivery Service > Configuration management. Click Configuration Keys to view the detailed
configurations.

What to do next

Obtain switch value
In the mPaaS Console, add necessary switch configuration items in Mobile Delivery Service > Configuration
management, and deliver the configuration items by platform, whitelist, percentage, version, device model,
iOS version and other information. For detailed operations, see Manage configurations.

When the switch key is released through the console, the client can get the key value corresponding to the
switch key by calling relevant interface.

+ (void)testStringForKey
{
 id<APConfigService>configService = [DTContextGet() findServiceByName:@"APConfigService"];
 NSString *configValue = [configService stringValueForKey:@"BillEntrance"];
 assert (configValue && [configValue isKindOfClass:[NSString class]]);
}

Note: Switch key values are obtained by calling the RPC API. The call to the RPC API is not necessarily
successful. Therefore, you must consider the local processing logic on the client to deal with failures in
obtaining key values. We recommend that you set a default switch value in the local logic on the client. You
can enable the client to use a new configuration logic when the console delivers a new switch value and use
the local default logic when the client fails to obtain a key value.

Advanced operations
Set the time when the client pulls a switch value:

During cold start of the application

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 64

30 minutes later than last pull after the application returns to the foreground

Note

The interval of 30 minutes is the default value. You can modify the interval by adding switch
 Load_Config_Interval on the Configuration Switch Management page under Mobile Delivery Service in

the mPaaS console. For more information about the steps, see Manage configurations.

Dynamically monitor switch value changes

You can add an observer for a specified key to dynamically monitor switch value changes.

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 65

When the client pulls switch configurations, you can obtain the latest switch value of the specified key in
the callback method.

You can forcibly pull a switch value from the console by using an SDK.

As a developer, you can add necessary switch configuration items in Mobile Delivery Service > Configuration
management in the mPaaS Console and deliver the configuration items by platform, whitelist or percentage,
version, device model, Android or iOS version and other information.

Prerequsite
Install the switch configuration service SDK on the Android or iOS client.

Add configuration items
You can add configuration items one by one, or import a JSON file to add the configuration items in batches.

The switch configuration list shows information including the configuration keys, creation time, update time,
creator, and modifier. The newly created configuration item is activated by default.

Add a configuration item
Log in to the mPaaS console, and complete the following steps:

1. From the navigation bar on the left, click Mobile Delivery service > Configuration management.

2. Click Add configuration, add Configuration key, Resource value, and choose Platform and Type. The
resource value is the value of the configuration key. A configuration key may have multiple resource values.
Click the Add button to set multiple resource values.

6.3. Manage configurations

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 66

3. (Optional) Click Add on the right of Advanced rule, and set version, osVersion, device model, and city to
deliver the configuration selectively.

4. Click Finished after you complete the configurations, and the items will appear in the configuration list.

Batch import
On the Configuration Switch Management page, click More operations > Import file, and import a JSON file
containing configuration items. The configuration items will appear in the list after import succeeded.

Important

If the configuration item in the file already exists in the file, the item will not be imported.

In addition to batch import function, MDS also supports exporting the configuration items. On the Configuration
Switch Management page, click More Operations> Configuration Export to download the JSON configuration
file to the local.

Search for a configuration item
On the Configuration switch management page, enter a keyword to search for the configuration item.

Modify a configuration item
Complete the following steps to modify a configuration item:

1. On the Configuration switch management page, select the target configuration item and click Modify.

2. Edit the Note, Resource value, Platform, Type or Advanced rule field based on your needs, and click
Finished. The configuration key cannot be modified.

Activate/Deactivate a configuration item
The newly created configuration item is activated by default. If you don’t need a configuration, you can click
Disable to deativate the configuration item. Likewise, for disabled configuration items, click Activate to make
them take effect again.

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 67

What to do next
After the switch key is released through the console, the client can obtain the key value corresponding to the
switch key by calling interfaces:

Android client

iOS client

Mobile Delivery Service User Guide·Configurat ion Mana
gement

> Document Version: 20230209 68

Whitelist management is a basic function of Mobile Delivery Service, which provides a whitelist management
platform where you can easily create hundreds of thousands of whitelist data for the use by real-time release.

On the whitelist management page, you can perform the following operations:

Create a whitelist

Add user information to a whitelist

Delete a whitelist

Create a whitelist
1. Log in to the mPaaS console, and click Mobile Delivery Service > Whitelist management on the left

navigation bar.

2. On the Whitelists page, click Add a whitelist, and enter a whitelist name, select a whitelist type and click OK
in the dialog box to create a whitelist.

Normal: Contents of the whitelist are user IDs. The whitelist is hit only when there is an exact match.

Regular expression mode: Contents of the whitelist are multiple regular expressions. The whitelist is hit if
any of the regular expressions is matched.

Add user information to a whitelist
1. Click Add right to the target whitelist in the whitelist list, and then enter the user IDs or regular expressions

to be added to the whitelist in the dialog box.

Add users to a whitelist of normal type

User IDs are configured by the clients. To learn how to do so, see User ID configuration. Multiple user IDs
must be separated by commas or line breaks. You can also upload a whitelist file containing user
information to add whitelist users in batch.

Add users to a whitelist of regular expression mode

Enter regular expressions. Separate with line breaks. Up to 20 expressions are allowed.

2. Click OK after you have entered the information.

Delete a whitelist
Click Delete right to the target whitelist in the whitelist list to delete it.

7.Manage whitelists

Mobile Delivery Service User Guide·Manage whitelists

> Document Version: 20230209 69

Resource configuration management is a basic function of Mobile Delivery Service. With this function, you can
predefine various configuration data required for Mobile Delivery Service and don’t have to manually input the
data every time, with work efficiency improved and error occurrence decreased.

The configuration data, such as city and device model, is also referred to as resources. When adding
configuration data, the resource name is shown to users. Only the resource value is used to match request
parameters of clients.

On the resource configuration management page, you can perform the following operations:

Add a resource

Modify resource configurations

Delete a resource

Add a resource
1. Log in to the mPaaS console, and click Mobile Delivery Service > Release rule management from the

navigation bar on the left to go to the resource rule management page.

2. On the release rule management page, click Add resource. In the pop-up window, select resource type and
platform type, enter the resource name and resource value, and then click OK to create the resource.

Resource type: The type of the resource. City, Device Model, Network, and Device System Version are
supported.

Platform type: Select a mobile platform. You can choose Android, iOS, or All.

Resource name: The name of the resource. You can define the name as needed. The resource name is
shown to users and generally consistent with the resource value.

Resource value: Only one resource value is supported. The following content describes the values of
various types of resources:

City: The name of the city at the prefecture and city level. The name must contain the administrative
unit, such as the city, region, autonomous prefecture, league. For example, the name can be Shanghai
Municipality, Haidong District, Qiannan Buyi and Miao Autonomous Prefecture, and Xing’an League.

Model: The model of the mobile device, such as VIVO X5M and iPhone 6S.

Network: The type of the network. Valid values: 2G, 3G, 4G, 5G, Wi-Fi, and WLAN.

Device OS version: The system version of the mobile device, such as 10.0.1 and 5.1.1.

If you do not know the model, network, and device system version of the mobile device, you can query the
information about the mobile client by calling the specified API. For more information, see Call API operations
to query resource configurations.

8.Manage release rules

Mobile Delivery Service User Guide·Manage release rul
es

> Document Version: 20230209 70

Modify resource configurations
To modify resource configurations, find the resource and click Modify in the Operation column. Edit the
resource configurations as required. Click OK to save the modification.

Delete a resource
To delete a resource, find the resource and then click Delete in the Operation column. To delete multiple
resources, select multiple resources, click Batch delete, and then click OK.

Call API operations to query resource configurations
When you add a resource, if you do not know the resource values of the network, device model, and device
system version, you can call the API to query configurations of the resource.

Perform the following steps:

1. Open a local project and call the following API to obtain the information of the mobile client:

Android clients

DeviceInfo deviceInfo = DeviceInfo.createInstance(context);
 AppInfo appInfo = AppInfo.createInstance(context);

 deviceInfo.getOsVersion(); //The version of the device system.
 deviceInfo.getmMobileModel(); //The model of the device.
 appInfo.getmProductVersion(); //The version of the device.

 int networkType = NetworkUtils.getNetworkType(context);//The network type of the device.
 networkType = 1 (2G)
 networkType = 2 (3G)
 networkType = 3 (Wi-Fi)
 networkType = 4 (4G)

iOS clients

Type Network Device system version
(system API)

Device model (mPaaS-
encapsulated API)

Switch configuration None [[UIDevice currentDevice]
systemVersion]

Baseline version
before 10.1.68.32:
[APMobileIdentifier
shareIdentifier].device
Model

Baseline version
10.1.68.32 and later:
[MPaaSDVInfo
sharedInstance].device
Model

Upgrade detection Wireless networks: Wi-Fi

Mobile networks: WWAN

[[UIDevice currentDevice]
systemVersion]

Baseline version
before 10.1.68.32:
[APMobileIdentifier
shareIdentifier].device
Model

Baseline version
10.1.68.32 and later:
[MPaaSDVInfo
sharedInstance].device
Model

Mobile Delivery Service User Guide·Manage release rul
es

> Document Version: 20230209 71

Hotfix management

Offline package
management

Mini Program
management

[DTReachability
networkName]

[[UIDevice currentDevice]
systemVersion]

Baseline version
before 10.1.68.32:
[APMobileIdentifier
shareIdentifier].device
Model

Baseline version
10.1.68.32 and later:
[MPaaSDVInfo
sharedInstance].device
Model

2. Report the client resource information to the server by uploading the log, and then view the resource
configuration information on the server.

Mobile Delivery Service User Guide·Manage release rul
es

> Document Version: 20230209 72

Learn about how to use the relevant APIs of Android update SDK.

Learn about how to use the relevant APIs of Android update SDK.

MPaaSCheckVersionService API

MPaaSCheckCallBack API

MPaaSCheckVersionService API

checkNewVersion
Check if a new version is available. This method starts an asynchronous task to check the updates and calls
the relevant callback method of MPaaSCheckCallBack whether or not a new version is available.

void checkNewVersion(Activity activity)

setIntervalTime
Set the interval of reminder:

void setIntervalTime(long interval202)

3 days by default, in milliseconds.

setMPaasCheckCallBack
An example of the callback to be called when setting the update SDK for checking updates:

void setMPaaSCheckCallBack(MPaaSCheckCallBack mPaaSCheckCallBack)

installApk
To install the package of the new version, in MPaaSCheckCallBack.alreadyDownloaded method, you can call:

void installApk(String filePath)
void installApk(ClientUpgradeRes res)

update
To download the package of the new version, in MPaaSCheckCallBack.showUpgradeDialog method, you can
call:

void update(ClientUpgradeRes res)

MPaaSCheckCallBack API

startCheck
Called after calling the update checking interface. In this method, you can prompt the users that the checking
is in loading:

void startCheck()

isUpdating

9.Reference
9.1. API

Mobile Delivery Service User Guide·Reference

> Document Version: 20230209 73

Called when the update checking interface is repeatedly called:

void isUpdating()

onException
Called when exceptions occur in update checking:

void onException(Throwable throwable)

dealDataInValid
Called if the returned update information is valid:

void dealDataInValid(Activity activity, ClientUpgradeRes result)

dealHasNoNewVersion
Called if the returned update information is invalid:

void dealHasNoNewVersion(Activity activity, ClientUpgradeRes result)

alreadyDownloaded
Called if the new version package has already been downloaded: You can prompt users to install this package
at this time. If users choose to install, then MPaaSCheckVersionService.installApk method is called for
installation:

void alreadyDownloaded(Activity activity, ClientUpgradeRes result)

showUpgradeDialog
Called when a new version is available, but the package is not downloaded. You can prompt and ask users
whether to update, if users choose to update, then MPaaSCheckVersionService.update method is called for
triggering download:

void showUpgradeDialog(Activity activity, ClientUpgradeRes result)

onLimit
Called when a new version is available, but the time from the last checking is less than the set interval. It is
valid only when the configuration is Single reminder.

void onLimit(Activity activity, ClientUpgradeRes result, String reason)

Android code sample
To check the style and interaction effect of this function in mobile device, download Android code sample,
then compile bundle in local Android Studio and install .apk file in you mobile device. See Get code sample for
more information.

iOS code sample

9.2. Code sample
9.2.1. Version update code sample

Mobile Delivery Service User Guide·Reference

> Document Version: 20230209 74

https://github.com/mpaas-demo/android-upgrade

Check for updates
mPaaS automatically connect the release function by calling update check interface to check whether a new
version is available. If a new version is available, a update window automatically pop up to remind user for
update. User tap Update to start auto update, no other encoding is required. To custom update prompt
window, see UI of custom update prompt below.

- (void)checkUpdate
{
 UpgradeCheckService *service = [UpgradeCheckService sharedService];
 service.delegate = self;
 [service checkUpgradeAndShowAlertWith:YES];
}

Note

Note: When you add SDK, the dependency on release service gateway mPaaS > Targets > MPHttpClient >
DTRpcInterface+upgradeComp.m is automatically added, thus you only need to call
checkUpgradeAndShowAlertWith method, the release component automatically connect the release
service in background.

UI of custom update prompt
You can custom the update prompt by implementing delegate.

pragma mark UpgradeViewDelegate
- (UIImage *)upgradeViewHeader
{
 return [UIImage imageNamed:@"FinancialCloud"];
}
- (void)showProgressHUD:(BOOL)animation
{
 self.toast = [APToastView presentToastWithin:self.view withIcon:APToastIconLoading text:nil];
}
- (void)hideProgressHUD:(BOOL)animation
{
 [self.toast dismissToast];
}

- (void)showToastViewWith:(NSString *)message duration:(NSTimeInterval)timeInterval
{
 [self showAlert:message];
}

Android code sample

mPaaS framwork based
See Get Code Sample to obtain code sample.

Native framework based

Demo address
See Get Code Sample to obtain code sample.

Download App to experience hotpatch function

9.2.2. Hotpatch Code Sample

Mobile Delivery Service User Guide·Reference

> Document Version: 20230209 75

https://github.com/mpaas-demo/android-hotpatch
https://github.com/mpaas-demo/android-hotpatch

In Android device, scan the following QR code with Alipay or DingTalk to install the App:

The procedure is as follows:

1. At the first time of starting the App, once you tap a button, an error message pops up to remind you that a
bug exists in the current version of the App.

Since this App has the hotpatch component accessed, the hotpatch package will be downloaded when the
bug is detected after App startup.

2. Kill the process of the App and restart it, tap a button in the App again, a message like Bug fixed pops up to
indicate that the bug is fixed.

The package downloaded in the first startup takes effect when the App restarts to fix the bug.

iOS code sample
For details about Hotpatch, See Mobile Delivery Service > Manage Hotpatch > Introduction to Accessing iOS.

Get started
1. Run the project directly, click Create Crash and program crashes.

2. Upload Test.js repair script in project directory to Mobile Delivery Service platform and create a release
task. For how to create a release task, see Mobile Delivery Service > Hotpatch > Manage Hotpatch.

3. Click Create Crash again, the program runs normally and the crash is fixed.

Mobile Delivery Service User Guide·Reference

> Document Version: 20230209 76

Download the code sample corresponding to your client type:

Download the code sample corresponding to your client type:

iOS: Switch configuration code sample (For accessing using Cocoapods)

Android: Switch configuration code sample (For accessing through mPaaS Inside and Native AAR)

For more information, refer to iOS Code Sample and Android Code Sample.

9.2.3. Switch configuration code sample

Mobile Delivery Service User Guide·Reference

> Document Version: 20230209 77

https://github.com/mpaas-demo/ios-configservice
https://github.com/mpaas-demo/android-configservice
https://github.com/mpaas-demo/ios-configservice?spm=a2c4g.11186623.2.11.4ba422760BdRZM
https://github.com/mpaas-demo/android-configservice?spm=a2c4g.11186623.2.28.4ba422760BdRZM

	1.Service announcement
	2.About Mobile Delivery Service
	3.Process of Mobile Delivery Service
	4.Manage version upgrade
	4.1. Android
	4.1.1. Quick start
	4.1.2. Advanced operations
	4.1.3. Default storage path

	4.2. iOS
	4.2.1. Add SDK
	4.2.2. Use SDK

	4.3. Manage Android releases
	4.4. Manage iOS releases

	5.Manage offline packages
	5.1. Configure offline packages
	5.2. Generate offline packages
	5.3. Create offline packages
	5.4. Release offline packages
	5.5. Manage offline packages
	5.6. OpenAPI
	5.6.1. Overview and preparation
	5.6.2. API description

	6.Configuration Management
	6.1. Android
	6.2. iOS
	6.3. Manage configurations

	7.Manage whitelists
	8.Manage release rules
	9.Reference
	9.1. API
	9.2. Code sample
	9.2.1. Version update code sample
	9.2.2. Hotpatch Code Sample
	9.2.3. Switch configuration code sample

